首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   10篇
  国内免费   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
31.
The discovery of formaldehyde for preserving tissue structures produced a new dimension in microscopy. Preserving structure and morphology became important; therefore, identifying a proper fixing agent for particular structures, chemical entities, and tissues, also became important. The methods for demonstrating tissue structures evolved and were implemented with careful observation and documentation of the results and outcomes. Formalin was incorporated into many techniques, and provided helpful results in many cases and hindrances in others. The effects of formalin on the outcomes of routine and special staining techniques are reported here.  相似文献   
32.
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014.Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance.In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated.  相似文献   
33.
34.
Glioblastoma multiforme (GBM) is a diffuse brain tumor characterized by high infiltration in the brain parenchyma rendering the tumor difficult to eradicate by neurosurgery. Efforts to identify molecular targets involved in the invasive behavior of GBM suggested ion channel inhibition as a promising therapeutic approach. To determine if the Ca2+-dependent K+ channel KCa3.1 could represent a key element for GBM brain infiltration, human GL-15 cells were xenografted into the brain of SCID mice that were then treated with the specific KCa3.1 blocker TRAM-34 (1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole). After 5 weeks of treatment, immunofluorescence analyses of cerebral slices revealed reduced tumor infiltration and astrogliosis surrounding the tumor, compared with untreated mice. Significant reduction of tumor infiltration was also observed in the brain of mice transplanted with KCa3.1-silenced GL-15 cells, indicating a direct effect of TRAM-34 on GBM-expressed KCa3.1 channels. As KCa3.1 channels are also expressed on microglia, we investigated the effects of TRAM-34 on microglia activation in GL-15 transplanted mice and found a reduction of CD68 staining in treated mice. Similar results were observed in vitro where TRAM-34 reduced both phagocytosis and chemotactic activity of primary microglia exposed to GBM-conditioned medium. Taken together, these results indicate that KCa3.1 activity has an important role in GBM invasiveness in vivo and that its inhibition directly affects glioma cell migration and reduces astrocytosis and microglia activation in response to tumor-released factors. KCa3.1 channel inhibition therefore constitutes a potential novel therapeutic approach to reduce GBM spreading into the surrounding tissue.  相似文献   
35.
[99mTc(N)(DBODC)(PNP5)]+ [DBODC is bis(N-ethoxyethyl)dithiocarbamato; PNP5 is bis(dimethoxypropylphosphinoethyl)ethoxyethylamine], abbreviated as 99mTc(N)-DBODC(5), is a lipophilic cationic mixed compound investigated as a myocardial imaging agent. The findings that this tracer accumulates in mitochondrial structures through a mechanism mediated by the negative mitochondrial membrane potential and that the rapid efflux of 99mTc(N)-DBODC(5) from nontarget tissues seems to be associated with the multidrug resistance (MDR) P-glycoprotein (P-gp) transport function open up the possibility to extend its clinical applications to tumor imaging and noninvasive MDR studies. The rate of uptake at 4 and 37 °C of 99mTc(N)-DBODC(5) was evaluated in vitro in selected human cancer cell lines and in the corresponding sublines before and after P-gp and/or MDR-associated protein (MRP) modulator/inhibitor treatment using 99mTc-sestamibi as a reference. The results indicated that (1) the uptake of both 99mTc(N)-DBODC(5) and 99mTc-sestamibi is correlated to metabolic activity of the cells and (2) the cellular accumulation is connected to the level of P-gp/MRP expression; in fact, an enhancement of uptake in resistant cells was observed after treatment with opportune MDR inhibitor/modulator, indicating that the selective blockade of P-gp/MRP prevented efflux of the tracers. This study provides a preliminary indication of the applicability of 99mTc(N)-DBODC(5) in tumor imaging and in detecting P-gp/MRP-mediated drug resistance in human cancer. In addition, the possibility to control the hydrophobicity and pharmacological activity of this heterocomplex through the variation of the substituents on the ligands backbone without affecting the P2S2 coordinating sphere makes 99mTc(N)-DBODC(5) a suitable scaffold for the preparation of a molecular probe for single photon emission computed tomography of MDR.  相似文献   
36.
A series of alkyloxyquinoline derivatives has been developed to evaluate the relationship between P-gp potency and lipophilicity. The results show a satisfactory lipophilicity-activity correlation although a series of derivatives showing higher P-gp potency is needed in order to confirm this hypothesis.  相似文献   
37.
Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury. Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor l-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that l-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that l-NIO would not be useful in alleviating the adverse effects of cardiac H/R.  相似文献   
38.
In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014–45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na+-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47phox knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease.  相似文献   
39.
We have cloned the Candida albicans TPK2 gene encoding a cAMP-dependent protein kinase (PKA) catalytic subunit and generated a tpk2 homozygous null mutant to assess its ability to germinate in liquid media. N-acetylglucosamine (GlcNAc)-induced germ-tube formation was attenuated in the tpk2 strain and enhanced by compounds that are known to increase the PKA activity in situ. Germination was completely blocked in the presence of the myristoylated derivative of the heat-stable PKA inhibitor (MyrPKI). These results indicate that TPK1 acts positively in regulating the morphogenetic transition in C. albicans in the absence of the TPK2 gene. We were able to identify an mRNA from this second form of PKA in both wild-type and tpk2 null mutant cells. We found that PKA activity measured in the mutant lacking the TPK2 gene was about 10% of that displayed by the wild-type. The finding that the germinative response of tpk2 null mutant to serum was severely diminished at low serum concentrations indicates that the level of PKA is an important determinant of filamentous growth at low serum concentrations. The extent of germination attained at higher serum concentrations (5%) was similar in the wild-type and in the tpk2 null mutant strains suggesting that under these conditions germination was triggered through a PKA-independent pathway.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号